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Abstract

If the interarrival times of a renewal process { S., i=O ,l,2.. .  } have

a failure rate function which is bounded away from 0 and ~~~ , then it is .

possible to construct (nonhomogeneous) Poisson processes f T0, i=O ,l,2,... }

and { T1’, i=0,l,2,... } on the saxne probability space with { S., i=O ,l.2 ,...
1 1

such that { T~ , T~~, T~ ,. ..  } c~~ S~~, S1
, s

2
1... } c { T~~, T~ , T~ ,... 

} almost

surely. This has applications to the reliability theory of maintained syster’s.

An almost sure comparison is also demonstrated for certain alternating renewal

processes which arose in Barlow and Proschan ’s (1976) investigation of main-

tairied systems in which repairs are not instantaneous.

Key words and phrases.

Renewal process , Poisson process, stochastic inequality, almos/ sure
inequality, reliability theory, maintained system. / 4 .
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1. Introduction and S u m ~ry

Inequalities play an important role in reliability theory. One example

is the following : Let F be the lifetime distribution of a component or

system with failure rate function r ( ) . Suppose inf r ( t) = r
0 

> 0 and
t

sup r(t) = r
1 

< ~ . If F
0 

and F
1 

are cdf ’s of exponential random vari-

ables wi th means r~
’ and r

1
1 

respectively , then F
0
(x) � F(x) ~ F1

(x)

for x � 0 . Such inequalities are valuable in situations where the lifetime

cdf F is unknown but it is possible to know or establish bounds on the

failure rate function.

If a component is instantaneously replaced or repaired when it fails ,

the sequence of failure times forms a renewal process: Let X ., i 1 ,2,...

be a sequence of i.i.d. lifetime random variables. Let S
0 

= 0 , S~ = X
1

S
2 

= X~ + , S
3 = X1 + X

2 
+ , ... , then { S~~, i 0 ,l,2,... } is a

renewal process. The purpose of this note is to present bounds for the

renewal process S similar to the example of the preceding paragraph,

namely: Suppose that the distribution of X has failure rate function r(~ )

such that inf r(t) = r
0 

> 0 and sup r~(t) = r
1 

< ~ . We show (Corollaries

1 and 2) that it is possible to construct Poisson processes ~ T?, i=0,1,2,

} and { T~~, i=0,l,2,... } with rates r
0 

and r
1 

respectively, such

that

{ T~ , T~~, T~ , ... } 
~ ~~ ~~~ 

~2’ } D { T~~, T~ , T~~, ... } (1.1)

with probability 1 , i.e., the failure times of the respective processes

are subsets of one another. (We shall actually construct nonhomogeneousr
Poisson processes which satisfy (1.1)).
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It is possible to use this to compute bounds on expected maintenance

costs, for example. This result is probably also of general interest as a

contribution to the theory of Poisson processes and renewal theory and thus

may be useful for establishing bounds in queueinq theory or inventory theory .

It is also possible to obtain a comparison result (Theorem 3) for

certain alternating renewal processes which arise when repairs or replace-

ment are not instantaneous. Barlow and Proschan (1976) consider such

processes. Theorem 3 and its proof give a slightly different and more

general approach to their problem. (We assume NWU repair times; they assume

DFR.)

There is a growing literature on comparison results for stochastic

processes. There are two general approaches : stochastic inequalities

[4,8,11,15,24] and almost sure inequalities [13 ,14 ,22]. (The list of

references is by no means exhaustive.) Pledger and Proschan (1973) , Ross

(1974) , Keilson (1974) , and Barlow and Proschan (1976) have applied

stochastic comparison techniques to reliability of maintained systems.

The comparisons derived in this paper will be of the “almost sure” variety .

These results are special for renewal and Poisson processes and are deri~’ec~

from first principles , not from any theories developed in the above-cited

.- literature, for example [13,22] do not apply. The above theories tend t~
1’

concentrate on stochastically monotone Markov processes [4]. We take more

of a point-process point of view in this paper , focusing on sample paths

and intensities rather than transition probabilities. Our approach is

constructive and indicates some interesting relationships involving the

faq. ire rate functions~ it may have pedagogical value.

We shall use the following relationship between stochastic ar.d almost

. ... -. -. .- 
~~~~~~~~~
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4
sure inequalities for the univariate case : Let X and Y be real-valued

random variables with cdf’s F and G, then X is stochastically less

than Y (denoted 
St y ) if F(z) > G(z) for all z. Let U and V

be real-valued random variables defined on the same probability space

as
(~~.F ,P), then U is almost surely less than V (denoted U V ) if

v( ..) ) 1 . Let X U mean that the random variables

X and U have the same distributior~.

St
Lemma 1. Lot X a:.d V t”e real-valued random variables. If X <

then there exist a ~,rr’babilitv space (~~,F ,p) and random variables U

• p as
and V defined on i t  such that U X, V = Y , and U ~ V.

Proof: Let ~i be LO ,11 , be the Borel sets and P be Lebesgue

measure . If Y a T d  V have cdf’s F’ and C, , let U = F 1 
and

v = G
-l

.

(This result can be extended to random vectors and random functions [12].)

2. Poisson Bounds on Renewal Processes

• In this section the existence of (dependent) nonhomogeneous Poisson

and renewal crocesses satisfying (1 .1) on a common probability space is

verified. We will use two representations of point processes on [o,c~)

the counting process N and the partial sum process S . N( t ) ~ points

in (0,t]. S = inf  ~ t : N ( t )  n } , n = 1,2 There will be a

point at 0 : S = 0 ; this is the zeroth point and is not counted by N,- 0

The necessary hackqround facts about homogeneous Poisson processes, renewal

processes , failure rates and other topics which will be used without
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I
reference can be found in most introductory stochastic process texts

[l,6,~~,l9,22J. The necessary facts about nonhomogeneous Poisson processes

on [0 ,00) are presented below.

Definition 1 Let r(~ ) be a real—valued function on [o ,co) which is

integrable over bounded intervals , then f N ( t ) , t  � 0 } is the counting

process representation of a nonhomogeneous Poisson process with intensity

function r if

i) N ( 0) = 0

ii ) N has independent increments

• iii) for 0 � s < t , N( t ) — N(s) is a Poisson random variable with

t
E( N(t) — N(s) ) = f r(u)du

We define A ( t )  ~
t

r (u ) du as the cumulative mean function of the

Poisson process with intensity r ()

Lemma 2. Let ~ N(t), t � 0 
} be a nonhomogeneous Poisson process with

intensity function r(~ ) . Let T = inf { t : N (t )  = n , n = 0 ,1,

2 Given that N(t) = k , then T
1
, T

2
, ... , T

k 
are jointly dis-

tributed as the order statistics of a sample of size k from the cdf

A ( s)/A (t )  , 0~ s�t . The density of this conditional joint distributicn is

k r (t .)
f~~ t1~ 

t
2~ l tk k ) = k !

~~~~
_A
~(t~

’ , 0 ~ ~~ S t2 S ... S t
k 

S t

Proof: Note that the conditional distribution of the interarrival time

T . - T . given T . = t . isi+l ~ 1 1

~~~—.-.-- - -- —-•—---- ~~~~ . .----~- - . --- ,.--.—--- -- ~~~~~~~~~~~~~~~~
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P { T . - T . > j T , t .~~i+l 1 1 1

= p{ N(t .+x) - N ( t , )  = 0 N ( t .)  = i }
1 1 1

t.+x

= e x p ( - f ’  r ( s) d s )
t .

1

Thus a version of th= density is

t.+x

~T . _ TJ T .
(id t

i
) = r(t.+x) exp( — 

1 r(s)ds ) .
i+l 1 1 t i

The conditional density 
~~~ 

t
1~ 

t
2~ 

t
k 

k ) can be computed now

exactly as is done in the proof of the analogous result for homogeneous

Poisson processes , see [ig] p.17, [ii p.67 , or [9] p .126 .

Lemma 3. Let r(~ ) be right continuous , then {N(t) ,t�0} is a nonhomo-

geneous Poisson process with intensity function r(~ ) , if and only if ,

for t � 0 ,

~~~ h
1 P{ N (t + h )  — N ( t )  = 1 N ( s ) , s S t } = r(t) (2.1)

~~~ h 1 P~ N (t+ h)  - N ( t )  � 2 N ( s ) , s � t } = 0 ‘2 . 2 )

almost surely, and N(0) = 0

Proof: If N is a nonhomogeneous Poisson process N(t+h) - N ( t )  is
t+h

independent of { N(s), s S t } and is Poisson with mean r(u)du
t+h t+h

p{ N(t+h) - N ( t )  = 1 }exp ( — r(u)du ) f r ( u ) du = h r ( t )  + o (h)

This verifies (2.1) ; (2 . 2 )  is verified similarly.

..__ __s , —- - —------— - ,.—-. -— —--
~~ --—— - -~~ —---- - -—— ____—- - --- - — - _ __
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Conv er ~~~1v , ( 2 . 1 )  .m~ (2.2) imp ly N i~; n o r  1~i - q -: ~eo ui- [‘~~s~~~:..

(iii) of U.~finitio:~ 1 can be v~-rified by solving th~r Kolmogorov f r ~2r .~

dif ferential , -- ~u~ tionn as in the homogeneous case , [9] ~- .24 , [20] n.1i~~.

Part (ii) of b.~fin~.tion 1 follows because the limits are independent of

the e ti re u;~ h: ~~~‘rv , { N(s) , s t } : this implies the ~arkov

1 repertv which in turn implies independent increments in this case.

~ote  thj t  if (2.1) and (2.2) were weakened by conditioning over

~ N ( t ) i r .~~to~j d of ~ N(s) , s ~ t 
} then (unless the i~arkov property is

assumed) N is not  necessarily a Poisson process. Similarly part (ii) of

Definition 1 cannot be weakened (to pair-wide independence , for example)

Shepp (see [5 ])a r .d  Szasz (1970) present counterexamples for the homogeneous

case; see Penyi (1967) also .

We can now Uresent the first comparisor1 theorem .

Theorem 1. Let 
~ 

i 0 ,l,2,... } be a renewal process with in ter-

arrival cdf F which has failure rate function r() , i.e. F(x) =

I - exp ( - 1 r(s)ds ) , x � 0 . Let r
1 

be a right—continuous function

such that sup r(s) S r
1
(t) < ~ for t � 0 . Then there exis ts  a nonhornoc-

0s ’ t

eneous Poisson crocess C T~~, i 0 ,l,2,.. - } with cumulative mean function

= 
~~ 

r
1

(s) ds defined on the same probability space as {S ., i=O ,l ,2,...
1

such that ~ T~~, T~~, T~~, ... } 
~ C s0 , 

~~~~~
‘ s2 , ... } almos t surely .

P r o o f :  As is f r e q u e n t l y  done , we shall not exp l i c i t ly  d e f i n e  the common

probability space on which S and T1 are def ined ; from the c o n s t r u c t i v e

definition of S from T
1 

it will be clear how an appropriate probabilit y

I .~- • 
~. - - -‘-—- - - 

~~~~~~~~~~ . - —~ 
- - -

- .._ , _ .__ .__ -~
_-__ __ _ ._ ____ __..__ _ __ _ ,__ __ .__ _ ____ .___
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t
could be defined.

Consider ~ T~ , i=0 ,i,2,. ..  }, a homogeneous Poisson process with

cumulative mean f u n c t i o n  A 1 . We shall construct a dependent version

of C S ., i=0 ,l ,2,... }, the desired renewal process , by “thinning ” T
1

i.e. certain points T~ will  be removed and the remaining points will

consti tute C S . ,  i 0 , l, 2 , . . .  } . Define S = T~’ = 0 . If T1 = t
1 0 0 1 1

remove (“thin”) the point T~ with probability 1-r(t
1
)/r

1
(t
1
) , thus

= T~ with probability r(t
1
)/r

1
(t
1
) condi tional on T~ = t~ . If

T~ is thinned and T~ = t
2 

, remove the point T~ with probability

l-r (t
2
)/r

1
(t
2
) . Thus, if T~ = t

1 
, T~ = t

2 
, S

1 
= t

2 
with probability

(l-r(t
1
)/r

1
(t
1
))(r(t

2
)/r

1
(t
2
)). Continue inductively until the first

“unthinned” point of T1 is reached and def ine  this point to be S
1 

. In

other words , given that T = ( 0, t1, t2, 
t
3
, ... ) define an integer-

valued random variable M
1 

:

m / r(t.) 
\\,

P ( M
1 

> m T1 = (0,t
1
,t
2
,...) ) = 1 1  — 

r1
(t . )  ( 2 . 3 )

1Then S
l
= T

M
1

We now consider the distribution of S . Let N (t) = max{ n: T
1 

S t ~~ .1 1 n

Then

00

P{S
1
> t } = E P { 8

1
> t , N

1
(t ) = k }

k~0 J p{ S
1 

> t ~~~~~ ~
t

k 
} f(t

1
, . . .  ,t

k!k) 
x

0�t1
�. .

dt1
. . .dt

k
P{ N 1

(t)  = k }

~~~~—

.,
-
~

-
-- - - 

. . . -- —-
~

- . -~~~~~~~~~~~ ----— 
- - - --.-— --.-—- -- .-~ .-~~~~—.--
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k / r(t.) ~ k r (t.)
= H (1 — —._!— Id rr 1 i dt ...dt
k=0 J i 1  r

1
(t .) ) i=]. A

1
(t) 1 k

0�t
l
< • •� t)~

�t \ /

, k
exp(-A,(t)) 

0
1

(t)

Id

= II (r (t,)-r(tj) dt . . .dt exp (-A
1
(t))

k=0 i=l 1 1 1. 1 k 
Id

~~~~~~~~~~~

= E .11 I~ (r (s)-r(s))ds exp(-A
1
(t))

• k=0 1
~~~ j 1

0

k=0 
(A1

(t) - Mt))
k exp (—1t

1
(t))

= exp ( A
1
(t) - A (t ) ) exp ( —A 1

(t) )

= exp(-A(t)) = exp ( - r(s)ds

I

t

_ _ _ _  ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. 

.— - _ _ _  

.



The third equality follows from Lemma 2 and (2.3), the fourth by symm etry,

the rest are routine . The above analysis implies that the distribution of

S
1 

has failure rate function r(). Thus S
1 

has the desired distribution .

Now we must consider the succeeding events in the renewal process S -

Condition over the partition { S
1 

= T~ = 

~l ~ 
s
1 

> 0 ; the random in ’~ x

is a stopping time ([3~~, p.59), therefore the strong Markov property

(~ 3], p.131) implies tha t the distribution of { 
~~~~~ — T~~, i=0,1,2,... 

}

is independent of C T~ , 0 5 i S M } conditional on CT = s, }. Given
1 1 M

1 
i.

that C T
M 

= 
~ 

} •~ C ~~~~~ — T~ , i=0 ,l,... } is a nonhomogeneous Pois’~on

• s
1
+t t

process with cumulative mean function A
1 1

(t) = f r
1
(s)ds f r

1
(s4-s1

)ds
5 01

I

Note that r
1(t+s

1
) � sup r ( s )  � sup r ( s )  for all t , thus conditional

‘ O�sSt+s
1 0�s�t

on { T
M 

= 
~l 

~ the process C T~ 
~~~

. - T~ , i=0,1,2,... } satisfies the
1 1~~ 1

same hypotheses which enabled us to construct S
1 

= T~ . Repeating the
1

constructive procedure gives 
~2 

conditional on S~ = 5
~ 

- Continuing

inductively allows construction of the entire renewal process C 
‘

0,1,2,... } . This completes the proof of Theorem 1.

• At this junction , some remarks are in order concerning “thinning ” :

The usual connotation of “thinni ng” refers to a more random form of deletinc

points, for example , for 0 < p < 1 , each point is deleted with probability

p independently of the process and other deletions. It is well known that a

Poisson process which is “thinned” in this sense remains a i’oisson process ,

see Renyi (1970), p.254 , P.4.10. Other aspects of thinning are discussed

~ 

_ _ _ _
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by Ráde (1972) and Jagers and Lindvall (1973).

In Theorem 1 if sup r (s) < ~
- then letting r

1 
= sup r(s) the

0�s<~ 0�s<~

hypotheses of theorem are satisfied and we have the following corollary .

Corollary 1. Let C s~ , i=0,1,... } be a renewal process with inter—

arrival distribution F which has failure rate function r(’). If

sup r(t) = r
1 

< ~ then there exists a (homogeneous) Poisson proces s
ost

C T~’, i 0 ,1,... } with intensity r
1 

defined on the same probability

space as C s~ , i=0,1,... } such that C T~ , T~~, T~~,... } 
~ C s0, s1,

s
2
,... } almost surely.

Theorem 2. Let C S. , i=0,1,2,... } be a renewal process with inter—

arr ival distribution F which has failure rate function r(~ ) . Let

r
0 

be a right-continuous function such that inf r(s) � r
0

( t )  > 0 for
s�t

t � 0 . Then there exists a nonhomogeneous Poisson process C T? ,

0,1,2,... } with cumulative mean function A
0
(t) = f 0 r

0
(s)ds defined on

the same probability space as C s~ , i=0,1,2,... } such that

C T~~, T~ , T~~,. .. } c { S
0
, S

1. ~~~~~ 
• ~ almost surely.

Proof: Consider C S ., i=0,1,2,.. . }, the renewal process with interarrival

cdf F which has failure rate function r . We shall construct a dependent

version of C T?, i 0 ,1,2,... } , the desired nonhomogeneous Poisson process,

by “thinninc” F’ as follows : if S. = s. and S ,—S . x .,, delete S . with— 1 1 ~ 
t~~l 1 1

probability 1 — r
0
(s .)/r(x .), i1,2 Let T~ = let T~ equal the

smallest undeleted S ., i~ l; let T~ equal the second smallest , etc. We

use Lemma 3 to show that C T°, i=0,l,... ~ is a nonhomogeneous Poisson

L~~~~. ~~~~
- -

~~~-
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process with intensity r,~() : Let N (t) = sup{ n : S t } , and
r n

N
0
(t) sup{ fl : T° � t }

Because T° is a thinning of 5, the 0—fields they generate are

comparable: a({ N
0
(s) , s < t }) c o({ N(s, , s t }) . Therefore , in

order in verify

~~~ h
1 

~C N0(t+h) - N
0
(t) = 1 1 N

0
(s), s ~ t ) = r

0
(t)

it suffices to verify

p { N~~(t+h) - N
0
(~~) 1 N(s), s S t } = r

0
(t) . (2.4)

r
By the strong Markov property for renewal processes, 1. N ( s ) , 0 5 s � S

N(t~

is conditionally independent of C N(s), SN (t) 
� s < t } given 5

N(t)

furthermore since S
N(t) 

is the last renewal at or before t

a(f N(s), 5
N t  ~ s S t }) = o({ 5N(t)’ N(t) }) ; also, for a renewal

process , N (t+h) - N( t) is independent of N(t ) given SN (t) . Putting

all of this together gives

p{ N
0
(t+h) — N

0
(t) = I N(s), s S t } (2.5)

k~ 1 ~C N
0
(t+h) - N

0
(t) = 1 j N(t+h) — N(t) = k, 5

N(t) ~ 
x

~
{ N(t+h) — N(t) = k j S }

N (t)

By renewal theory ,

F(t+h_s
~
)-F(t—s

~
~‘{ N(t+h) 

— N(t) = k S
N(t) * ~ 

1 — F(t—s
~
) (2.6)

-

~~~~~~~~~ - -~~~~- - -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _
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- t
-~~ equality holds for k = 1, strictly inequality for k > 2 . Divi ding

(2.6) by h and letting h ~ 0 yields r(t-s
~

) for k = 1 and 0

for k > 1 . Thus in order to verify (2.4) using (2.5) , it suffices to

show that

r (t)

PC N 0
(t+h) — N

0
(t) = 1 N(t) = 1, S

N ( t ) 
= S~ 

} 
r(t-s

~
) (2.7)

But

p { N
0

(t+h) — N
0
(t) = 1 N (t -4 -h) — N ( t )  = 1, S

N ( t ) 
= S ,~,

t+h
= f P {SN ( t ) + l  is unthinned I S~~~~ 41

dPCSN ( t ) +l 
s t < 5N (t )+ 1 

< t+h
~
S
N(t) 

= s
~
}

t+h r
0
(s) r(s—s

~
) exp( — f r(u)du )

— f
t r(s—s~ ) t—s

~ t+h—s
exp(— 

~0 
r(u)du ) —  exp(— f

~ 
*r (u) du )

I . s_s
*

t+h exp(— 1t-s
~ 

r(u)du )

- . = 1  r,~(s) ds
t ~

‘ t+h_s
~

1 - exp( — f r(u)du )
t-s

‘1 *

I 
s—s*

t+h exp( — 1t—s~ 
r(u)du )

= f  r
0
(s)

r t 1 — 1 + r ( t — s~~
) +

~~~~
. 

~~~
—-

~~~~~~~:
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1 
t+h r (s)f 0 ds + o ( h )

h t r(t—s
~
)

r (s)
— 

0 + o(h)
r(t—s

~
)

This verifies (2 .7) and consequently (2.1) of Lemma 3. Eq. (2.2) of the

Lemma 3 is verified similarly. Thus T° is a nonhomogeneous Poisson

process with in t
~~nsity r

0
(

Corollary 2. Let C s~, i=0,l,... } be a renewal process with interarrival

cdf F which has failure rate function r( ) . If inf r(t) = r > 0
0

then there exists a (homogeneous) Poisson process C T? , i=0,l,... } with

a intensity r
0 

defined on the same probability space as C S. , i 0 ,l,... }

such that C T~~, T~~, T~~,... } c { S0, s1, s2,... I almost surely.

We shall now present an example from reliability theory which indicates

a possible application of the above theorems: bounds on the expected

discounted cost of repair/replacement of a component renewal process. Sup-

pose the life time of a component has distribution F with failure rate

• function r() . Let S
1
, S~~, ... be successive failure times. Suppose

if a component failures at time t, it costs c(t) to renew it. No

assumptions (except integrability) are placed on c, it can vary daily

or seasonally, etc. Let d be a discount factor. The discounted cost of

maintaining the system is

- 

t 
~~~ 

exp( —dS~) c(S.)
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If T° and T
1 

are nonhomogeneous Poisson processes with intensity

functions r
0
() and r

1
(.) respectively , as described in Theorems 1

and 2 then

i~ l 
exp (—dT~) c(T?) i~ 1 

exp(—dS .) c(S
~
) 

~~l 
exp (—dT~ ) c(T

1
)

It is often easier to evaluate functionals of Poisson processes than

renewal processes. In the above case it is much easier to compute moments:

f e ~
dt 

c(t)r
0
(t)dt S E~ E exp(-ds )C(s )) � ~~~~~~~ c(t)r1

(t)dt

In this example it is p lausible that r(• ) is unknown but can be

assumed 2o be bounded by r and r thus giving the above bound on
0 1

expected renewal cost.

3. Comparisons of some alternating renewal processes

In this section we compare some processes which arise when failed

components are not instantaneously repaired. Consider the special case

of a repairable component with exponential lifetime distribution F and

• NWU (new worse than used) repair time distribution G • The component

will alternating spend random times functioning and under repair. Let X

be the performance process [2,21]

- • 0 , component functioning at t
X ( t )  =

1 , component under repair at t

If L
1
, L

2
,... and R

1
, R

2
,... are the successive lifetimes and repair

j
times, let T2j = ~E1

(L . + R .) and T2 .~~1 = T2. + L.~~1 , 
i = 0 ,1,2,...

________________________ 
I

L~~~~~~~~~~~~~~~~ ~~ T - :~~~ T~ [~~ 11 11
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10 T . 4 t < T .2i 2i-s-1
X(t) =

~ l T n t < T .2i+l 2i+2

i = 0,1,2 Let the auxiliary performance process [2]

0 T . S t < T .2i 2i+1
Z ( t )  = ‘

~
t - T  T < t < T

-
~ 2i+l 2i+l — 2i+2

i = 0,1,2 This process describes a system which is functioning at time

0 . Let Z describe a system which has been under repair at time 0 for

a duration equal to u . Barlow and Proschan (1976) establish a stochastic

inequality between Z~ and Z under the assumption that repair times are

DFR (decreasing failure r~Y.e). We shall establish an almost—sure inequality .

Let R
0 be the ini tial repair period of a system under repair at time

• U U0 . If repair commenced at -u , let T
1 

= -u and T
0 

= —u+R
0 

> 0

Define T” = T
u 

+ T. , as defined above. Then
1 0 1

0 T’~ � t < T ~
’

2i 2i+l
Z (t) =~~

T
U <~~~ < T

u
2 i+l 2i+l — 2i+2

i = -1 ,0,1 Note that Z and Z
u 

are both Markov processes with the

same transition law , only their initial state differs.

Theorem 3 The processes Z and Z~ can be defined on a common prob—

ability space such that Z(t) 
~ 
Z
u
(t) t � 0 , almost surely .

Proof: Let be the remaining repair time in a repair period which

has been in prooress u units of time . Let L~ be lifetime random

— _• .— —_ — .-

—--- --—-- ----- ——
~~~~

---- -. -._—-— — ‘--——---—- r _ _ __ _ _
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variables and R . be repair time random variables, i 1,2 Let

be the remaining repair time in a repair period which has been in

progress t units of time. Because R is NWU , the residual repair

time R~ is stochastically greater than R ., t > 0 , i = 1,2 By

Lemma 1, let I. = [o ,i], F . be Borel sets and P. be Lebesgue measure ,

define R . , R~ , t > 0 , on (I ., F ,pj such that P( R . S R~ ) 1 -
1 1 1 1 1 1 1

Def ine R~ on (I
s
, F

01P0
) and define L. on similar probability spaces

(J ,, G . , Q .)  . Let (~~ , 
F ,P) be the product space of all the above spaces ;

extend the domain of the above—define random variables in the obvious way .

-
• 

C Z (t ) ,  t � 0 1 is automatically defined on (~
) , F ,p) . We define

{ Z (t), t � 0 } as follows: On C RU < L I , Z (t) = u+t for
U 0 1 U

0 5 t < R’~ , and Z (t) = Z ( t) for t � R
U . Note that the lack of

0 U 0

memory property of the exponential distribution guarantees that the

first lifetime of the Z
n
_process will have the correct distribution . On

C R~ > L~ I , condition over L
1 

= 

~l 
: if L

1 
= 

~l 
and R~ � then

at time (when the Z—process begins its first repair period) the Z~-

process has been under repair for a duration u+9.
1 

, thus

describes the repair status of Z . On the set C L = 9~ < R
U

u 1 1 0

R’~~~l S R + L I define Z (t) = u+t for 0 � t S 9~ + R~
’
~~l and1 1 2 ii 1 1

z (t ) = Z (t )  for t � + R~~
2
l . By construction , the Z—process is

repaired before the Z —process; since R~~
2
~l S R

1 
+ L

2 
, the Z—process

will be functioning when the repair of the Z -process is completed and
t U

the residual lifetime will be exponential. This procedure of defining Z

on (~~ , F ,P) can be continued inductively. The next step is to condition

over{L
1
=~~ 1

, R
1

r
1

, L2
2~., } and C

- 
_ _  

- ---
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Given these conditions , the Z —process has been under repair t
3
+u time

• units at time t
3 

= 2,
1
+r

1
+2

2 
, thus R~~t3 is the distribution of resid-

ual repair time. On the set C L
1 
= 

~l 
~ R~ R

1 
r
, 

L
2 

= 

~2

� r + ~Q , R~~~ 3 S R +L I define Z (t) = t+u for 0 5 t S t +
1 1 2 2 2 3  u 3

R
U
~
t3 and Z (t) = Z(t) for t � t +R~~~~3 . It should be clear from the2 u 3 2

construction that 2 (t) � Z(t) with probability 1

Theorem 3 can be used to establish almost sure comparisons between the

operating processes of coherent systems with exponential component life

times and NWU component repair times similar to the stochastic inequality

established by Barlow and Proschan (1976) and then show that the time

until first system failure is NBU. 

— -  —- -.—• .r~— 
— -  — -- — • — - . -

4
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